
Abstract—The remarkable athletic intelligence displayed by 

humans in complex dynamic movements such as dancing and 

gymnastics suggests that the balance mechanism in biological 

beings is decoupled from specific movement patterns. This 

decoupling allows for the execution of both learned and unlearned 

movements under certain constraints while maintaining balance 

through minor whole-body coordination. To replicate this balance 

ability and body agility, this paper proposes a versatile controller 

for bipedal robots. This controller achieves ankle and body 

trajectory tracking across a wide range of gaits using a single small-

scale neural network, which is based on a model-based IK solver 

and reinforcement learning. We consider a single step as the 

smallest control unit and design a universally applicable control 

input form suitable for any single-step variation. Highly flexible 

gait control can be achieved by combining these minimal control 

units with high-level policy through our extensible control interface. 

To enhance the trajectory tracking capability of our controller, we 

utilize a three-stage training curriculum. After training, the robot 

can move freely between target footholds at varying distances and 

heights. The robot can also maintain static balance without 

repeated stepping to adjust posture. Finally, we evaluate the 

tracking accuracy of our controller on various bipedal tasks, and 

the effectiveness of our control framework is verified in the 

simulation environment. 

I. INTRODUCTION

Reinforcement learning (RL) methods for controlling legged 
robots have become a widely recognized research field with 
remarkable achievements in different application scenarios [1]-
[4]. The goal of locomotion control can generally be summarized 
in five aspects: robustness, power, precision, lifelikeness, and 
intelligence. Adapting to modeling mismatch and environmental 
interference is the primary goal of legged robot motion control 
problem. Several sim-to-real technique for RL have been 
demonstrated to enhance the robustness of control strategies by 
bridging the “reality gap” between strategies trained in 
simulation and their real-world counterparts. Domain 
randomization [5][8] is one of the typical methods that 
significantly improve the adaptivity of policies by randomizing 
the dynamics of the simulator during training. Privileged learning 
[9][10] provides a way for policies to gain rich experience in 
traversing intricate terrains learned from privileged information 
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available only in simulation, which can be distilled via supervised 
learning. The motor adaptation algorithm [11] designs an 
adaptation module that takes fully utilizes proprioceptive 
historical state data to predict the extrinsic and solve the real-
time online adaptation problem. Powerful and precise are a group 
of challenging goal for RL, requiring strong driving capability as 
well as accurate and comprehensive control ability. The ostrich-
like bipedal robot Cassie ran 100 meters in only 24.73 seconds 
using an RL policy. Li et al. [12] present an RL framework for 
Cassie to achieve robust and versatile dynamic jumps, such as 
jumping to different specified locations and directions. To 
synthesize graceful and life-like locomotion, imitation learning, 
and generative adversarial networks (GANs) are introduced to 
imitate the behaviors of biological beings using large amounts of 
processed biological movement data for training[13][14].  

With the rapid development in robotics and its related fields, 
including body locomotion control, computer vision (CV), 
natural language processing (NLP), and simultaneous 
localization and mapping (SLAM), the pursuit of robot 
intelligence capable of integrating multidisciplinary research 
findings is intensifying. Multitasking and autonomous decision-
making capabilities are two key aspects of robotic control 
intelligence. A versatile robot capable of autonomously 
completing various tasks based on instructions and 
environmental conditions is desired. Several hierarchical 
learning frameworks [15][18] have been devised to decouple 
end-to-end learning across multiple levels and allow different 
levels to utilize different resolutions of time. High-level strategies 
achieve multitask control and seamless transitions by utilizing 
latent variables to invoke reusable and composable lower-level 
strategies. Brohan et al. [19][20] demonstrate the generalization 
capabilities of robotics by transferring knowledge from large, 
diverse, task-agnostic datasets to modern machine learning 
models. Huang et al. [21] extract actionable knowledge from 
large language models (LLMs) to synthesize robot trajectories 
through a dense sequence of 6-DoF end-effector waypoints. They 
leverage the code-writing capabilities of LLMs to interact with a 
vision-language model (VLM) which can ground the knowledge 
into 3D observation space, and showcase the ability to perform a 
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wide variety of everyday manipulation tasks specified in free-
form natural language on a robotic arm. 

Undoubtedly, synthesizing interdisciplinary knowledge is 
crucial for developing highly intelligent robot control algorithms. 
However, unlike the end-to-end control methods demonstrated in 
[19][21] which are primarily validated on mechanical arms, 
controlling complex floating base robot represented by legged 
robots can be much more challenging due to their stability being 
closely related to their physical structure. We suggest that 
adopting a low-level approach to robotic embodied intelligence 
is key to bridging motion control for specific robots and the high-
level large models. In this scenario, the same high-level controller 
can function on different robots with their own local low-level 
controllers and achieve zero-shot generalization to new tasks.  

The objective of this paper is to design a versatile bipedal 
robot control method that is open-ended and task-independent 
with an intuitive and interpretable control interface. The central 
contribution of this work is an agile and general bipedal robot 
tracking controller based on reinforcement learning, which 
endows the bipedal robot with embodied intelligence. 
Locomotion tasks are designed based on real-time robot trunk 
and ankle position and orientation, which can be precisely 
tracked unless compromises are essential for balance. We 
propose a control framework that combines model-based 
feedforward policy with learning-based feedback policy to 
generate highly customized locomotion for various motion 
patterns. Curriculum learning [22] is also utilized during training 
to mimic the progressive learning process of humans. The agility 
of motion, universal balancing ability, and excellent tracking 
proficiency of our controller are demonstrated through various 
common tasks in simulation. 

II. RELATED WORK

A. Action Space Legged Control

Precise foot placement control has been implemented on both
quadruped and bipedal robots using model-based and model-free 
methods. Previous works have demonstrated significant potential 
for integrating models and learning methods for location tracking 
in Cartesian space. For instance, the quadruped robot Max can 
execute highly challenging maneuvers such as rotating steps and 
single-pole jumps on poles of varying heights, relying on 
technologies such as robot vision positioning, terrain recognition, 
omnidirectional six-degree-of-freedom motion planning, and 
high-precision model predictive control [23]. Jenelten et al. [24] 
propose a hybrid control architecture that combines the 
advantages of a model-based planner and deep neural network 
policy simultaneously, achieving remarkable robustness, foot-
placement accuracy, and terrain generalization. This framework 
serves as a successful example of combining model-based and 
model-free approaches to the legged robot control problem. Arm 
et al. [25] train a robust RL policy for a quadruped robot to track 
position target points for one foot. Various real-word tasks such 
as door opening, sample collection and pushing obstacles are 
demonstrated through teleoperation. Li et al. [12] present an RL 
framework for training a bipedal robot to accomplish jumps to 

specific locations and directions using a multi-stage training 
scheme. They utilize a policy that structurally encodes both the 
long-term input/output (IO) history and the short-term I/O history. 
Duan et al. [26] proposed a method to integrate knowledge of the 
legged robot system into neural networks, enabling task space 
action learning in terms of foot setpoints. They use a task space 
inverse dynamics controller to track the foot pitch, yaw and 
position generated by the RL policy. Conversely, in our previous 
work [27], we apply a reference signal as a feedforward 
instruction and use an RL policy to generate feedback signals. 
The effectiveness of this combination has been validated through 
a bunch of bipedal and quadrupedal motions. 

B. Versatile Multi-Task Control Frameworks

Multitask learning for robots working in various environment
has become a new tough challenge after high accuracy and speed 
are widely realized among substantial single tasks. Cheng et al. 
[28] use a single neural net policy operating from a camera image
with large scale reinforcement learning which can overcome
imprecise sensing and actuation to output highly precise control
behavior on quadrupedal parkour end-to-end. Brohan et al.
[19][20] train a single, capable, large multi-task backbone model
on data consisting of a large size of robotic arm tasks with
human-provided demonstrations training data using a
transformer architecture.

Hierarchical control structure is widely used to deal with 
multi-task control problem. Ito et al. [29] propose an easily 
scalable method in which multiple deep predictive learning (DPL) 
[30] modules calculate the prediction error in real time and the
one with the minimum prediction error is automatically executed.
Only the competing part of each module is required to be
designed artificially, thus it’s easy to add or delete the modules
of different tasks. A unified reward is used for different parkour
cases, and the robot is finally able to long jump, high jump, run
over tilted ramps, and even walk on just front two legs. Cheng et
al. [31] proposed a skill learning and composition framework in
which a behavior tree that encodes a high-level task hierarchy
from one clean expert demonstration is learned to compose low
level skills that are successfully transferred to the real world via
online adaptation. Peng et al. [14] achieve stylized physics-based
virtual humanoid character control using adversarial motion
priors. They propose an adversarial method for learning general
motion priors from large unstructured datasets. Their approach
does not necessitate synchronization between the policy and
reference motion because the adversarial discriminator is trained
using the dataset consisting all the motion priors of multiple tasks,
thus composition of disparate skills emerges automatically from
the motion prior without any high-level planner. Peng et al. [2]
further extended their research to a great larger scale data-driven
framework which combines techniques from adversarial
imitation learning and unsupervised reinforcement learning to
train a low-level latent variable model synthesized by a high-level
policy to produce behaviors like that in the dataset.

While these algorithms can generate very fluid movements 
and switch between tasks, we suggest that these control 
frameworks fall short in adding new, highly definable movement 



patterns. Once policies are trained, it is difficult to adjust 
locomotion in action space based on interpretable instructions 
anymore, and this is what we will focus on in this paper. 

III. CONTROL STRUCTURE

A. Overview

Model-based methods and model-free reinforcement learning
have been broadly applied to tackling bipedal locomotion.  To 
accomplish complex motion tasks, the former typically requires 
establishing dynamic models that make a trade-off between 
complexity and accuracy, as well as manually designed control 
structures for specific tasks. The latter exhibits superior 
generalization and robustness while lacking some interpretability 
in its end-to-end control structure. Inspired by the ideal of 
combining these two approaches [32]-[34], we extend it to a 
general bipedal robot trajectory tracking control problem for both 
robot trunk and ankles. The framework of our control method is 
shown in Fig.1.  

Figure 1.  Overview of the control structure 

We use an extensible high-level trajectory planner to generate 
control trajectories according to different task as input, which is 
fed to both a model-based IK solver to generate feedforward 
signals and a neural network to generate feedback signal. We 
simplify the algorithm's manual design complexity significantly 
by using simple inverse kinematics instead of inverse dynamics 
models. These two signals are combined through weighted 
summation and filtering to generate target positions for each joint. 
Finally, a PD controller is used to control the robot. 

B. Robot model and kinematics

In this paper, we use a modified 12-joint Ranger Max robot
model [35] , which differs from the original robot in several 
aspects. Each leg has three hip joints, one knee joints and two 

ankle joints. The general details of the robot model are shown in 
Table 1. 

TABLE I. DETAILS OF THE ROBOT MODEL 

Link 
Physical parameters 

Size Mass 

Trunk 0.3m×0.3m×0.15m 20kg 

Thigh 0.4m (length) 6.4kg 

Shank 0.35m (length) 2kg 

Foot 0.16m (length) 1kg 

We first define the concept of controllable nodes: controllable 
nodes are the coordinates on the robot whose position and 
orientation can be set as control target. In legged control tasks, 
the most concerned points of the robot are the trunk center, the 
left ankle, and the right ankle while the position and orientation 
of the knee and hip joints are always ignored. Thus, we identify 
the trunk node , the left ankle node , and the right ankle node 

 as shown in Fig. 2. 

Figure 2.  Controllable nodes of the robot (a) Controllable nodes and their 

coordinate system (b) Task-step target position and real-time target position of 

the controllable nodes  

We establish the robot base coordinate system  at , the 
left ankle coordinate system  at , and the right ankle 
coordinate system  at  as shown in Fig. 2. Since the pitch 

and roll angles of the robot's feet during walking are typically 
adjusted based on the environment and the robot's own state, we 
only consider the yaw angle of the feet as the control target. 
However, to prevent the leg joint solving from becoming a 
complex redundant degree of freedom problem, we assume that 
the feet always remain horizontal with respect to the trunk's 
transverse plane to provide a feedforward signal 

() 

where is the Y-axis of coordinate system .Then the 
feedforward joint angles can be obtained by solving the inverse 
kinematics equations with the positions and orientations of the 
three controllable nodes, constrained by the assumption of 
horizontal feet 

() 



where  is the vector of all the joint angles.  and  are the 
position of  and .  and  are the yaw angles of  and 

 respectively. Then variables mentioned above are 

represented in the robot base coordinate system . We prevent 
the issue of unsolvable inverse kinematics function by 
preprocessing the controllable nodes' positions of the ankles that 
are outside the robot's workspace, moving them closer to the 
interior of the workspace.. 

C. Task description

We define the movement of the foot from leaving the ground
to returning to the ground as a task step. In our control framework, 
all the tasks are described as a series of task steps. Each task step 
consists of the trajectories of the three controllable nodes in a 
custom task-step period. The position and orientation of the 
controllable nodes at the end of a task-step period represent the 
target state of the robot after the completion of the task step. 
Within a task-step period, different gaits can be generated by 
designing smooth trajectories of each node about time. In this 
paper, we design a high-level trajectory planner to generate 
intermediate trajectories for certain end state of a task step. The 
fourth-order Bezier curves are employed to plan smooth ankle 
trajectories whose shape can be determined by the control points 
of the Bezier curve, allowing us the flexibility to adjust the shape 
of the ankle trajectories as desired. For the trunk nodes , we 
typically provide a uniform velocity and angular velocity 
trajectory from the start to the end state of the task step. Note that 
this high-level planner is extensible if other kinds of trajectories 
are needed for complex tasks, and we have successfully 
experimented with using higher-order Bezier curves and 
trigonometric curves. 

To make our control method widely applicable to various 
tasks, we have defined several basic task steps for training. By 
combining them, the robot can achieve a variety of task-
decoupled changes in body state. The basic task steps are as 
shown in Table. 2. 

TABLE II. BASIC TASK STEP INTRODUCTION 

Task step Task step introduction 

1 Standing still 

The robot stands still in random posture with 
different trunk and ankle nodes position and 

orientation. 

2 Squat 
The robot adjusts its trunk position and 
orientation without moving its feet. 

3 
Walking 

backward/forward 

The robot moves forward and backward in a 

straight line with different trunk heights. 

4 Sidle 
The robot moves left and right in a straight 
line with different trunk heights. 

5 Turn 
The robot turns clockwise or 

counterclockwise with a random radius. 

6 
Walking up and 

down stairs 

The robot goes up and down steps of different 

heights and lengths. 

For the first two basic tasks, the feet never leave the ground 
so that the task-step period is 0 seconds. For the other tasks, the 
task-step period is a random value between 0.4 seconds and 0.7 
seconds. The shapes of ankle trajectories are controlled by 
several Bezier control points which vary randomly within a 

certain range. In our control structure, all these basic task steps 
take the form of a unified control input  

(3) 

where the superscript  describes the final state of a task step and 
 describes the real time state. , ,  are the target 

position of ,  and  as shown in Fig. 2(b).  is the target 
orientation of .  and  are the target yaw angles of  and 

. The elements of  and  are all presented in .  acts as 
a timer, where  and  represent how long the left and right 
foot are expected to touch the ground respectively. For the basic 
task standing still and squat in which the feet are always in 
contact with the ground,  is always a zero vector.. 

D. Instruction learning

In our previous work, we refer to a learning method that
combines feedforward and feedback as “instruction learning” 
[27], which is inspired by the human learning process and is 
highly efficient, flexible, and versatile for robot motion learning. 
We design the control architecture of this paper based on the 
same approach and extend it to a more general framework. We 
pass the input in (3) to both a neural network and a model-based 
inverse kinematics (IK) solver, as shown in Fig. 1. The IK solver 
calculates the feedforward joint angles according to the real time 
target state of the controllable nodes using the inverse kinematics 
equations in (2). Then we normalize the values in   to [-1,1] to 
balance the unit 

() 

() 

The output vector of the feedback network  whose element 
is also limited in [-1,1] represents the feedback adjustment for 
each joint. The control action signal is a weighted sum of the 
feedforward and feedback signals 

() 

where  is the feedback ratio. By adjusting , the boundaries 

of the control action are specified as shown in Fig. 2. The 

influence of  has been discussed in [27]. 

Figure 3.  Illustration of action bounding 



To prevent the robot joints from exceeding their physical 
limits, we clip the control signals to the range of [-1, 1] using the 

 function. Additionally, to mitigate the risk 
of robot jitter caused by large differences in adjacent joint angle 
signals, we employ a simple first-order low-pass filter to filter the 
control signals. 

(7) 

where  is the filtering coefficient and  represents 
the action signal of the previous time step. Finally,  is mapped 
to the range of joint angles for each joint and used to control the 
robot through the PD controller.. 

IV. RL PROBLEM FORMULATION

To obtain a feedback policy that cooperates with the model-
based feedforward IK-solver, we employ reinforcement learning 
to train the feedback policy. Proximal policy optimization (PPO) 
[36] is used to train the feedback policy  due to its stability, 
sample efficiency and strong adaptability to continuous action 
space.  

A. Hyperparameter and neural network

Some of the main training hyperparameters are shown in
Table. 3. The values of learning rate, beta and epsilon varies in 
different training stages. We achieve finer adjustment of the 
network by gradually reducing their maximum values and choose 
a linear learning schedule. The feedback network has an actor-
critic structure. The actor network is a multi-layer perceptron 
(MLP) with 3 hidden layers with 512 hidden units for each layer. 
The critic network is another MLP with 2 hidden layers with 128 
hidden units for each layer. 

TABLE III. TRAINING HYPERPARAMETERS 

Hyperparameter Value (Stage1/2/3) 

batch_size 2048 

buffer_size 20480 

learning_rate 0.0003/0.0002/0.0001 

beta 0.02/0.015/0.07 

epsilon 0.02/0.015/0.07 

lambda 0.95 

num_epoch 3 

B. Observation and action

The observation of the learning strategy is designed as 

(8) 

where  is the error between the target task-step end state 
and the real controllable nodes state, and  is the error 
between the target real-time state  and the real controllable 

nodes state.  is the derivative of  with respect to time. 
represents for gravity.  and  are the velocity and angular 
velocity of . All the observation elements above are measured 
in .  and  are the joint angle position vector and the joint 
angle velocity vector. The action of the network  is a feedback 
vector that reflects what direction and how much adjustment joint 
angles should make based on the current robot target and state in 
addition to the feedforward signal. Each element in  is within 
[-1,1].  is the output vector of the feedback network at the 
previous time. 

(9)

(10) 

C. Reward design

Due to the introduction of the feedforward signal, the
feedback network no longer needs to contain a large amount of 
information related to the robot model. It focuses more on fine-
tuning the robot in the current state to achieve coordinated motion 
and tracking of controllable points. Thus, the task-specific signals 
are also included in the feedforward part, so we can reward the 
network in a uniform form which is task-independent 

(11) 

where  is a constant reward that encourage the robot from 

falling.  represents the reward for encouraging the robot's 

controllable node states to be as close as possible to the real-time 

target states.  has three parts corresponding to three 

controllable nodes 

(12) 

 is formulated exponentially and represents the state 

tracking error of controllable nodes , the reward forms are as 

follow 

(13) 

(14) 

denotes the quaternion difference for trunk orientation, the 

yaw angle difference for ankle orientation and the vector 

difference otherwise. The ideal of trunk “soft” tracking 

introduced in [24] is employed here as the position and 

orientation of ankles are always much more important than that 

of the trunk. When necessary, the tracking error of trunk will be 

compromised for whole body balance maintenance and ankle 

tracking, thus we set the position error weight  and the 

orientation error weight  of the trunk  to be only 0.2 times 

that of the ankle error weight  and , .  is the 

reward to punish excessive feedback signals, which encourage 

the control policy to be more “lazy” 

(15) 



The final reward is used to penalize the trembling of the 
robot and is only activated when the target velocities of all three 
controllable nodes are stationary. 

(16) 

where  and  are the velocity and acceleration of the th 
joint, . 

D. Multi-stage training and episode design

The final goal of the training is to develop a control policy
that enables the robot to flexibly execute a variety of single-step 
movements which is introduced as task-step in this paper, and 
complete diverse task by combining these single-step movements. 
To ensure the universality and diversity of tasks, it is necessary 
to consider different kinds of single-step variations, including 
changes in the position and orientation of the trunk and ankle 
nodes in both the horizontal plane and the vertical direction. We 
design a three-stage training curriculum to gradually increase the 
complexity of single-step movements as shown in Fig. 4. 

We prepared unique pools of single-step movements for each 
training stage. During training, a random movement from the 
pool is selected for each episode. In the first training stage, we 
focus on learning motions on level ground, and we put the first 5 
motions in Table. 2 into the movement pool. One training stage 
is divided into a few training lessons, where we gradually 
increase the complexity of ankle node target trajectories, such as 
increasing the step length and the leg lifting height. In the second 
stage, we add stair climbing into the movement loop. Since stairs 
can be regarded as obstacles during leg movement, the ankle 
trajectory tracking ability acquired in the first training stage 
serves as a preparatory skill for stair climbing actions in the 
second stage. We attempt to learn stair climbing from the 
beginning, only to find that the robot would continuously perform 
stationary stepping movements to avoid tripping or falling down 
stairs. At this point, the robot is capable of freely controlling its 
legs to perform various gaits. We proceed with a third-stage static 
balance training process. For all movements in the pool, we 
instruct the robot to maintain the state of the controllable nodes 
after completing a certain number of single-step movements, 
allowing the robot to maintain the posture obtained after each 
single-step movement. Through this training, we free the robot 
from the exhausting state of repeatedly stepping to adjust its body 
position to maintain balance. 

To train the network more efficiently, episodes need to be 
terminated promptly when the robot's state deviates from the goal 
and there is little possibility of recovery. An episode terminates 
when the tilt angle of the robot trunk exceeds 60 degrees or when 
the episode duration reaches the maximum training time. 

Figure 4.  Three-state training 

V. SIMULATION RESULTS

We use Unity and ML-Agents for simulation and training to 
validate our methodology. The PhysX engine is adopted. The 
time step for each action is 0.005s, which indicates a control 
frequency of 200 Hz. The training is running on the CPU of a 
personal computer. To speed up the training, we use 50 copies of 
the agents for parallel training. The whole training process which 
has 300 million steps takes around 70 hours.  

After the three-stage learning, the robot can achieve all the tasks listed in Fig. 
2. We tested each type of them and recorded the errors for 10 seconds. The

tracking errors for different tasks are shown in Fig.5 to Fig. 10 and the

visualized

trajectories are depicted in Fig. 11, where the green 
trajectories represent the nodes' target trajectories, and the yellow 
trajectories represents the nodes' actual trajectories. It can be 
noticed that the average position tracking error of both left and 
right ankles is within 5 centimeters or less, and the average 
orientation tracking error of ankles is within 5 degrees or less. 
The tracking error of the trunk trajectory is relatively large. 
Considering that the trunk tracking trajectory provided does not 
have an actual dynamic basis, this phenomenon is acceptable 
under the soft constraint condition that compromises trunk 
tracking for balance. 

Figure 5.  Tracking error of walking down stairs 

Figure 6.  Tracking error of walking forward 



Figure 7.  Tracking error of walking backward 

Figure 8.  Tracking error of sidle 

Figure 9.  Tracking error of turn 

Figure 10.  Tracking error of walking up stairs 

Figure 11.  Trajectories in different tasks 

Figure 12.  Static balance maintainance 

We also conducted experiments on the robot's static balance capability. For all 

movements in the task pool, we allow the robot to move multiple steps and 

then stop updating the target foothold. We find that the robot could maintain its 
current posture as shown in Fig. 12. So far, we have validated the effectiveness 

of our proposed framework in level ground locomotion, stair climbing, and 

static balance maintenance. All feedback motion control is achieved by a single 
small-scale network. Through designing the position of footholds, we also 

tested the obstacle avoidance capability of our controller, as shown in Fig. 13. 

This demonstrates that our universal controller can accomplish a variety of 

tasks through flexible combinations of single-step movements. 

Figure 13.  Obstacle avoidance 

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a method that combines both model-

based and RL approaches for agile and versatile bipedal robot 

tracking control. We design a universal form of control interface, 

enabling the robot to accomplish various tasks through 

combinations of different single-step movements. Through a 

small-scale three-layer network and a simple IK solver, our 

controller has achieved excellent and general tracking 

capabilities for foot and body trajectories as well as static 

balance capabilities. The main contributions of this paper are: (1) 

Proposing a task-independent balance control approach that 

decouples robot motion control from task requirements, 

enabling the robot to achieve intrinsic balance capability solely 

based on its physical structure. (2) Providing a real-time precise 

ankle position tracking method, allowing for controlled leg 



movement height in robots, with interpretability. The 

effectiveness of our approach is validated through simulation 

experiments.  

Thanks to the human-like properties of our control framework, 

we anticipate achieving more intricate movements, such as 

single-leg jumping, one-legged stance, and long jumping, 

among others, using the extensible high-level trajectory planner. 

Additionally, our controller’s task inputs are defined by node 

states, which underscores its potential for human teleoperation 

of the bipedal robot via wearable sensor devices. Our immediate 

priority is to implement the algorithm on the physical humanoid 

robot system currently under construction. Subsequently, we 

will expand its application to additional tasks, culminating in the 

development of a teleoperation system for bipedal robots built 

upon this control framework. 
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