
Abstract—The remarkable athletic intelligence displayed by

humans in complex dynamic movements such as dancing and

gymnastics suggests that the balance mechanism in biological

beings is decoupled from specific movement patterns. This

decoupling allows for the execution of both learned and unlearned

movements under certain constraints while maintaining balance

through minor whole-body coordination. To replicate this balance

ability and body agility, this paper proposes a versatile controller

for bipedal robots. This controller achieves ankle and body

trajectory tracking across a wide range of gaits using a single small-

scale neural network, which is based on a model-based IK solver

and reinforcement learning. We consider a single step as the

smallest control unit and design a universally applicable control

input form suitable for any single-step variation. Highly flexible

gait control can be achieved by combining these minimal control

units with high-level policy through our extensible control interface.

To enhance the trajectory tracking capability of our controller, we

utilize a three-stage training curriculum. After training, the robot

can move freely between target footholds at varying distances and

heights. The robot can also maintain static balance without

repeated stepping to adjust posture. Finally, we evaluate the

tracking accuracy of our controller on various bipedal tasks, and

the effectiveness of our control framework is verified in the

simulation environment.

I. INTRODUCTION

Reinforcement learning (RL) methods for controlling legged
robots have become a widely recognized research field with
remarkable achievements in different application scenarios [1]-
[4]. The goal of locomotion control can generally be summarized
in five aspects: robustness, power, precision, lifelikeness, and
intelligence. Adapting to modeling mismatch and environmental
interference is the primary goal of legged robot motion control
problem. Several sim-to-real technique for RL have been
demonstrated to enhance the robustness of control strategies by
bridging the “reality gap” between strategies trained in
simulation and their real-world counterparts. Domain
randomization [5][8] is one of the typical methods that
significantly improve the adaptivity of policies by randomizing
the dynamics of the simulator during training. Privileged learning
[9][10] provides a way for policies to gain rich experience in
traversing intricate terrains learned from privileged information

* Research supported by the National Natural Science Foundation of China

under grants No. 62003188 and No.92248304.
J. Li, Y. Cheng and H. Liu are with the Center for Artificial Intelligence and

Robotics, Tsinghua Shenzhen International Graduate School, Tsinghua

University, 518055 Shenzhen, China. H. Liu is the corresponding author. (e-mail:
lijiayi21@mails.tsinghua.edu.cn; chenge9191@163.com;

liu.hd@sz.tsinghua.edu.cn).

available only in simulation, which can be distilled via supervised
learning. The motor adaptation algorithm [11] designs an
adaptation module that takes fully utilizes proprioceptive
historical state data to predict the extrinsic and solve the real-
time online adaptation problem. Powerful and precise are a group
of challenging goal for RL, requiring strong driving capability as
well as accurate and comprehensive control ability. The ostrich-
like bipedal robot Cassie ran 100 meters in only 24.73 seconds
using an RL policy. Li et al. [12] present an RL framework for
Cassie to achieve robust and versatile dynamic jumps, such as
jumping to different specified locations and directions. To
synthesize graceful and life-like locomotion, imitation learning,
and generative adversarial networks (GANs) are introduced to
imitate the behaviors of biological beings using large amounts of
processed biological movement data for training[13][14].

With the rapid development in robotics and its related fields,
including body locomotion control, computer vision (CV),
natural language processing (NLP), and simultaneous
localization and mapping (SLAM), the pursuit of robot
intelligence capable of integrating multidisciplinary research
findings is intensifying. Multitasking and autonomous decision-
making capabilities are two key aspects of robotic control
intelligence. A versatile robot capable of autonomously
completing various tasks based on instructions and
environmental conditions is desired. Several hierarchical
learning frameworks [15][18] have been devised to decouple
end-to-end learning across multiple levels and allow different
levels to utilize different resolutions of time. High-level strategies
achieve multitask control and seamless transitions by utilizing
latent variables to invoke reusable and composable lower-level
strategies. Brohan et al. [19][20] demonstrate the generalization
capabilities of robotics by transferring knowledge from large,
diverse, task-agnostic datasets to modern machine learning
models. Huang et al. [21] extract actionable knowledge from
large language models (LLMs) to synthesize robot trajectories
through a dense sequence of 6-DoF end-effector waypoints. They
leverage the code-writing capabilities of LLMs to interact with a
vision-language model (VLM) which can ground the knowledge
into 3D observation space, and showcase the ability to perform a

L. Ye is with the Institute of Artificial Intelligence, Collaborative Innovation

Center for the Marine Artificial Intelligence, Shanghai University, 200444
Shanghai, China.(e-mail: yelinqi@shu.edu.cn).

B. Liang is with the Navigation and Control Research Center, Department of

Automation, Tsinghua University, 100084 Beijing, China (e-mail:
bliang@tsinghua.edu.cn).

Agile and versatile bipedal robot tracking control through

reinforcement learning

Jiayi Li, Linqi Ye, Yi. Cheng, Houde Liu*, and Bin Liang

wide variety of everyday manipulation tasks specified in free-
form natural language on a robotic arm.

Undoubtedly, synthesizing interdisciplinary knowledge is
crucial for developing highly intelligent robot control algorithms.
However, unlike the end-to-end control methods demonstrated in
[19][21] which are primarily validated on mechanical arms,
controlling complex floating base robot represented by legged
robots can be much more challenging due to their stability being
closely related to their physical structure. We suggest that
adopting a low-level approach to robotic embodied intelligence
is key to bridging motion control for specific robots and the high-
level large models. In this scenario, the same high-level controller
can function on different robots with their own local low-level
controllers and achieve zero-shot generalization to new tasks.

The objective of this paper is to design a versatile bipedal
robot control method that is open-ended and task-independent
with an intuitive and interpretable control interface. The central
contribution of this work is an agile and general bipedal robot
tracking controller based on reinforcement learning, which
endows the bipedal robot with embodied intelligence.
Locomotion tasks are designed based on real-time robot trunk
and ankle position and orientation, which can be precisely
tracked unless compromises are essential for balance. We
propose a control framework that combines model-based
feedforward policy with learning-based feedback policy to
generate highly customized locomotion for various motion
patterns. Curriculum learning [22] is also utilized during training
to mimic the progressive learning process of humans. The agility
of motion, universal balancing ability, and excellent tracking
proficiency of our controller are demonstrated through various
common tasks in simulation.

II. RELATED WORK

A. Action Space Legged Control

Precise foot placement control has been implemented on both
quadruped and bipedal robots using model-based and model-free
methods. Previous works have demonstrated significant potential
for integrating models and learning methods for location tracking
in Cartesian space. For instance, the quadruped robot Max can
execute highly challenging maneuvers such as rotating steps and
single-pole jumps on poles of varying heights, relying on
technologies such as robot vision positioning, terrain recognition,
omnidirectional six-degree-of-freedom motion planning, and
high-precision model predictive control [23]. Jenelten et al. [24]
propose a hybrid control architecture that combines the
advantages of a model-based planner and deep neural network
policy simultaneously, achieving remarkable robustness, foot-
placement accuracy, and terrain generalization. This framework
serves as a successful example of combining model-based and
model-free approaches to the legged robot control problem. Arm
et al. [25] train a robust RL policy for a quadruped robot to track
position target points for one foot. Various real-word tasks such
as door opening, sample collection and pushing obstacles are
demonstrated through teleoperation. Li et al. [12] present an RL
framework for training a bipedal robot to accomplish jumps to

specific locations and directions using a multi-stage training
scheme. They utilize a policy that structurally encodes both the
long-term input/output (IO) history and the short-term I/O history.
Duan et al. [26] proposed a method to integrate knowledge of the
legged robot system into neural networks, enabling task space
action learning in terms of foot setpoints. They use a task space
inverse dynamics controller to track the foot pitch, yaw and
position generated by the RL policy. Conversely, in our previous
work [27], we apply a reference signal as a feedforward
instruction and use an RL policy to generate feedback signals.
The effectiveness of this combination has been validated through
a bunch of bipedal and quadrupedal motions.

B. Versatile Multi-Task Control Frameworks

Multitask learning for robots working in various environment
has become a new tough challenge after high accuracy and speed
are widely realized among substantial single tasks. Cheng et al.
[28] use a single neural net policy operating from a camera image
with large scale reinforcement learning which can overcome
imprecise sensing and actuation to output highly precise control
behavior on quadrupedal parkour end-to-end. Brohan et al.
[19][20] train a single, capable, large multi-task backbone model
on data consisting of a large size of robotic arm tasks with
human-provided demonstrations training data using a
transformer architecture.

Hierarchical control structure is widely used to deal with
multi-task control problem. Ito et al. [29] propose an easily
scalable method in which multiple deep predictive learning (DPL)
[30] modules calculate the prediction error in real time and the
one with the minimum prediction error is automatically executed.
Only the competing part of each module is required to be
designed artificially, thus it’s easy to add or delete the modules
of different tasks. A unified reward is used for different parkour
cases, and the robot is finally able to long jump, high jump, run
over tilted ramps, and even walk on just front two legs. Cheng et
al. [31] proposed a skill learning and composition framework in
which a behavior tree that encodes a high-level task hierarchy
from one clean expert demonstration is learned to compose low
level skills that are successfully transferred to the real world via
online adaptation. Peng et al. [14] achieve stylized physics-based
virtual humanoid character control using adversarial motion
priors. They propose an adversarial method for learning general
motion priors from large unstructured datasets. Their approach
does not necessitate synchronization between the policy and
reference motion because the adversarial discriminator is trained
using the dataset consisting all the motion priors of multiple tasks,
thus composition of disparate skills emerges automatically from
the motion prior without any high-level planner. Peng et al. [2]
further extended their research to a great larger scale data-driven
framework which combines techniques from adversarial
imitation learning and unsupervised reinforcement learning to
train a low-level latent variable model synthesized by a high-level
policy to produce behaviors like that in the dataset.

While these algorithms can generate very fluid movements
and switch between tasks, we suggest that these control
frameworks fall short in adding new, highly definable movement

patterns. Once policies are trained, it is difficult to adjust
locomotion in action space based on interpretable instructions
anymore, and this is what we will focus on in this paper.

III. CONTROL STRUCTURE

A. Overview

Model-based methods and model-free reinforcement learning
have been broadly applied to tackling bipedal locomotion. To
accomplish complex motion tasks, the former typically requires
establishing dynamic models that make a trade-off between
complexity and accuracy, as well as manually designed control
structures for specific tasks. The latter exhibits superior
generalization and robustness while lacking some interpretability
in its end-to-end control structure. Inspired by the ideal of
combining these two approaches [32]-[34], we extend it to a
general bipedal robot trajectory tracking control problem for both
robot trunk and ankles. The framework of our control method is
shown in Fig.1.

Figure 1. Overview of the control structure

We use an extensible high-level trajectory planner to generate
control trajectories according to different task as input, which is
fed to both a model-based IK solver to generate feedforward
signals and a neural network to generate feedback signal. We
simplify the algorithm's manual design complexity significantly
by using simple inverse kinematics instead of inverse dynamics
models. These two signals are combined through weighted
summation and filtering to generate target positions for each joint.
Finally, a PD controller is used to control the robot.

B. Robot model and kinematics

In this paper, we use a modified 12-joint Ranger Max robot
model [35] , which differs from the original robot in several
aspects. Each leg has three hip joints, one knee joints and two

ankle joints. The general details of the robot model are shown in
Table 1.

TABLE I. DETAILS OF THE ROBOT MODEL

Link
Physical parameters

Size Mass

Trunk 0.3m×0.3m×0.15m 20kg

Thigh 0.4m (length) 6.4kg

Shank 0.35m (length) 2kg

Foot 0.16m (length) 1kg

We first define the concept of controllable nodes: controllable
nodes are the coordinates on the robot whose position and
orientation can be set as control target. In legged control tasks,
the most concerned points of the robot are the trunk center, the
left ankle, and the right ankle while the position and orientation
of the knee and hip joints are always ignored. Thus, we identify
the trunk node , the left ankle node , and the right ankle node

 as shown in Fig. 2.

Figure 2. Controllable nodes of the robot (a) Controllable nodes and their

coordinate system (b) Task-step target position and real-time target position of

the controllable nodes

We establish the robot base coordinate system at , the
left ankle coordinate system at , and the right ankle
coordinate system at as shown in Fig. 2. Since the pitch

and roll angles of the robot's feet during walking are typically
adjusted based on the environment and the robot's own state, we
only consider the yaw angle of the feet as the control target.
However, to prevent the leg joint solving from becoming a
complex redundant degree of freedom problem, we assume that
the feet always remain horizontal with respect to the trunk's
transverse plane to provide a feedforward signal

()

where is the Y-axis of coordinate system .Then the
feedforward joint angles can be obtained by solving the inverse
kinematics equations with the positions and orientations of the
three controllable nodes, constrained by the assumption of
horizontal feet

()

where is the vector of all the joint angles. and are the
position of and . and are the yaw angles of and

 respectively. Then variables mentioned above are

represented in the robot base coordinate system . We prevent
the issue of unsolvable inverse kinematics function by
preprocessing the controllable nodes' positions of the ankles that
are outside the robot's workspace, moving them closer to the
interior of the workspace..

C. Task description

We define the movement of the foot from leaving the ground
to returning to the ground as a task step. In our control framework,
all the tasks are described as a series of task steps. Each task step
consists of the trajectories of the three controllable nodes in a
custom task-step period. The position and orientation of the
controllable nodes at the end of a task-step period represent the
target state of the robot after the completion of the task step.
Within a task-step period, different gaits can be generated by
designing smooth trajectories of each node about time. In this
paper, we design a high-level trajectory planner to generate
intermediate trajectories for certain end state of a task step. The
fourth-order Bezier curves are employed to plan smooth ankle
trajectories whose shape can be determined by the control points
of the Bezier curve, allowing us the flexibility to adjust the shape
of the ankle trajectories as desired. For the trunk nodes , we
typically provide a uniform velocity and angular velocity
trajectory from the start to the end state of the task step. Note that
this high-level planner is extensible if other kinds of trajectories
are needed for complex tasks, and we have successfully
experimented with using higher-order Bezier curves and
trigonometric curves.

To make our control method widely applicable to various
tasks, we have defined several basic task steps for training. By
combining them, the robot can achieve a variety of task-
decoupled changes in body state. The basic task steps are as
shown in Table. 2.

TABLE II. BASIC TASK STEP INTRODUCTION

Task step Task step introduction

1 Standing still

The robot stands still in random posture with
different trunk and ankle nodes position and

orientation.

2 Squat
The robot adjusts its trunk position and
orientation without moving its feet.

3
Walking

backward/forward

The robot moves forward and backward in a

straight line with different trunk heights.

4 Sidle
The robot moves left and right in a straight
line with different trunk heights.

5 Turn
The robot turns clockwise or

counterclockwise with a random radius.

6
Walking up and

down stairs

The robot goes up and down steps of different

heights and lengths.

For the first two basic tasks, the feet never leave the ground
so that the task-step period is 0 seconds. For the other tasks, the
task-step period is a random value between 0.4 seconds and 0.7
seconds. The shapes of ankle trajectories are controlled by
several Bezier control points which vary randomly within a

certain range. In our control structure, all these basic task steps
take the form of a unified control input

(3)

where the superscript describes the final state of a task step and
 describes the real time state. , , are the target

position of , and as shown in Fig. 2(b). is the target
orientation of . and are the target yaw angles of and

. The elements of and are all presented in . acts as
a timer, where and represent how long the left and right
foot are expected to touch the ground respectively. For the basic
task standing still and squat in which the feet are always in
contact with the ground, is always a zero vector..

D. Instruction learning

In our previous work, we refer to a learning method that
combines feedforward and feedback as “instruction learning”
[27], which is inspired by the human learning process and is
highly efficient, flexible, and versatile for robot motion learning.
We design the control architecture of this paper based on the
same approach and extend it to a more general framework. We
pass the input in (3) to both a neural network and a model-based
inverse kinematics (IK) solver, as shown in Fig. 1. The IK solver
calculates the feedforward joint angles according to the real time
target state of the controllable nodes using the inverse kinematics
equations in (2). Then we normalize the values in to [-1,1] to
balance the unit

()

()

The output vector of the feedback network whose element
is also limited in [-1,1] represents the feedback adjustment for
each joint. The control action signal is a weighted sum of the
feedforward and feedback signals

()

where is the feedback ratio. By adjusting , the boundaries

of the control action are specified as shown in Fig. 2. The

influence of has been discussed in [27].

Figure 3. Illustration of action bounding

To prevent the robot joints from exceeding their physical
limits, we clip the control signals to the range of [-1, 1] using the

 function. Additionally, to mitigate the risk
of robot jitter caused by large differences in adjacent joint angle
signals, we employ a simple first-order low-pass filter to filter the
control signals.

(7)

where is the filtering coefficient and represents
the action signal of the previous time step. Finally, is mapped
to the range of joint angles for each joint and used to control the
robot through the PD controller..

IV. RL PROBLEM FORMULATION

To obtain a feedback policy that cooperates with the model-
based feedforward IK-solver, we employ reinforcement learning
to train the feedback policy. Proximal policy optimization (PPO)
[36] is used to train the feedback policy due to its stability,
sample efficiency and strong adaptability to continuous action
space.

A. Hyperparameter and neural network

Some of the main training hyperparameters are shown in
Table. 3. The values of learning rate, beta and epsilon varies in
different training stages. We achieve finer adjustment of the
network by gradually reducing their maximum values and choose
a linear learning schedule. The feedback network has an actor-
critic structure. The actor network is a multi-layer perceptron
(MLP) with 3 hidden layers with 512 hidden units for each layer.
The critic network is another MLP with 2 hidden layers with 128
hidden units for each layer.

TABLE III. TRAINING HYPERPARAMETERS

Hyperparameter Value (Stage1/2/3)

batch_size 2048

buffer_size 20480

learning_rate 0.0003/0.0002/0.0001

beta 0.02/0.015/0.07

epsilon 0.02/0.015/0.07

lambda 0.95

num_epoch 3

B. Observation and action

The observation of the learning strategy is designed as

(8)

where is the error between the target task-step end state
and the real controllable nodes state, and is the error
between the target real-time state and the real controllable

nodes state. is the derivative of with respect to time.
represents for gravity. and are the velocity and angular
velocity of . All the observation elements above are measured
in . and are the joint angle position vector and the joint
angle velocity vector. The action of the network is a feedback
vector that reflects what direction and how much adjustment joint
angles should make based on the current robot target and state in
addition to the feedforward signal. Each element in is within
[-1,1]. is the output vector of the feedback network at the
previous time.

(9)

(10)

C. Reward design

Due to the introduction of the feedforward signal, the
feedback network no longer needs to contain a large amount of
information related to the robot model. It focuses more on fine-
tuning the robot in the current state to achieve coordinated motion
and tracking of controllable points. Thus, the task-specific signals
are also included in the feedforward part, so we can reward the
network in a uniform form which is task-independent

(11)

where is a constant reward that encourage the robot from

falling. represents the reward for encouraging the robot's

controllable node states to be as close as possible to the real-time

target states. has three parts corresponding to three

controllable nodes

(12)

 is formulated exponentially and represents the state

tracking error of controllable nodes , the reward forms are as

follow

(13)

(14)

denotes the quaternion difference for trunk orientation, the

yaw angle difference for ankle orientation and the vector

difference otherwise. The ideal of trunk “soft” tracking

introduced in [24] is employed here as the position and

orientation of ankles are always much more important than that

of the trunk. When necessary, the tracking error of trunk will be

compromised for whole body balance maintenance and ankle

tracking, thus we set the position error weight and the

orientation error weight of the trunk to be only 0.2 times

that of the ankle error weight and , . is the

reward to punish excessive feedback signals, which encourage

the control policy to be more “lazy”

(15)

The final reward is used to penalize the trembling of the
robot and is only activated when the target velocities of all three
controllable nodes are stationary.

(16)

where and are the velocity and acceleration of the th
joint, .

D. Multi-stage training and episode design

The final goal of the training is to develop a control policy
that enables the robot to flexibly execute a variety of single-step
movements which is introduced as task-step in this paper, and
complete diverse task by combining these single-step movements.
To ensure the universality and diversity of tasks, it is necessary
to consider different kinds of single-step variations, including
changes in the position and orientation of the trunk and ankle
nodes in both the horizontal plane and the vertical direction. We
design a three-stage training curriculum to gradually increase the
complexity of single-step movements as shown in Fig. 4.

We prepared unique pools of single-step movements for each
training stage. During training, a random movement from the
pool is selected for each episode. In the first training stage, we
focus on learning motions on level ground, and we put the first 5
motions in Table. 2 into the movement pool. One training stage
is divided into a few training lessons, where we gradually
increase the complexity of ankle node target trajectories, such as
increasing the step length and the leg lifting height. In the second
stage, we add stair climbing into the movement loop. Since stairs
can be regarded as obstacles during leg movement, the ankle
trajectory tracking ability acquired in the first training stage
serves as a preparatory skill for stair climbing actions in the
second stage. We attempt to learn stair climbing from the
beginning, only to find that the robot would continuously perform
stationary stepping movements to avoid tripping or falling down
stairs. At this point, the robot is capable of freely controlling its
legs to perform various gaits. We proceed with a third-stage static
balance training process. For all movements in the pool, we
instruct the robot to maintain the state of the controllable nodes
after completing a certain number of single-step movements,
allowing the robot to maintain the posture obtained after each
single-step movement. Through this training, we free the robot
from the exhausting state of repeatedly stepping to adjust its body
position to maintain balance.

To train the network more efficiently, episodes need to be
terminated promptly when the robot's state deviates from the goal
and there is little possibility of recovery. An episode terminates
when the tilt angle of the robot trunk exceeds 60 degrees or when
the episode duration reaches the maximum training time.

Figure 4. Three-state training

V. SIMULATION RESULTS

We use Unity and ML-Agents for simulation and training to
validate our methodology. The PhysX engine is adopted. The
time step for each action is 0.005s, which indicates a control
frequency of 200 Hz. The training is running on the CPU of a
personal computer. To speed up the training, we use 50 copies of
the agents for parallel training. The whole training process which
has 300 million steps takes around 70 hours.

After the three-stage learning, the robot can achieve all the tasks listed in Fig.
2. We tested each type of them and recorded the errors for 10 seconds. The

tracking errors for different tasks are shown in Fig.5 to Fig. 10 and the

visualized

trajectories are depicted in Fig. 11, where the green
trajectories represent the nodes' target trajectories, and the yellow
trajectories represents the nodes' actual trajectories. It can be
noticed that the average position tracking error of both left and
right ankles is within 5 centimeters or less, and the average
orientation tracking error of ankles is within 5 degrees or less.
The tracking error of the trunk trajectory is relatively large.
Considering that the trunk tracking trajectory provided does not
have an actual dynamic basis, this phenomenon is acceptable
under the soft constraint condition that compromises trunk
tracking for balance.

Figure 5. Tracking error of walking down stairs

Figure 6. Tracking error of walking forward

Figure 7. Tracking error of walking backward

Figure 8. Tracking error of sidle

Figure 9. Tracking error of turn

Figure 10. Tracking error of walking up stairs

Figure 11. Trajectories in different tasks

Figure 12. Static balance maintainance

We also conducted experiments on the robot's static balance capability. For all

movements in the task pool, we allow the robot to move multiple steps and

then stop updating the target foothold. We find that the robot could maintain its
current posture as shown in Fig. 12. So far, we have validated the effectiveness

of our proposed framework in level ground locomotion, stair climbing, and

static balance maintenance. All feedback motion control is achieved by a single
small-scale network. Through designing the position of footholds, we also

tested the obstacle avoidance capability of our controller, as shown in Fig. 13.

This demonstrates that our universal controller can accomplish a variety of

tasks through flexible combinations of single-step movements.

Figure 13. Obstacle avoidance

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a method that combines both model-

based and RL approaches for agile and versatile bipedal robot

tracking control. We design a universal form of control interface,

enabling the robot to accomplish various tasks through

combinations of different single-step movements. Through a

small-scale three-layer network and a simple IK solver, our

controller has achieved excellent and general tracking

capabilities for foot and body trajectories as well as static

balance capabilities. The main contributions of this paper are: (1)

Proposing a task-independent balance control approach that

decouples robot motion control from task requirements,

enabling the robot to achieve intrinsic balance capability solely

based on its physical structure. (2) Providing a real-time precise

ankle position tracking method, allowing for controlled leg

movement height in robots, with interpretability. The

effectiveness of our approach is validated through simulation

experiments.

Thanks to the human-like properties of our control framework,

we anticipate achieving more intricate movements, such as

single-leg jumping, one-legged stance, and long jumping,

among others, using the extensible high-level trajectory planner.

Additionally, our controller’s task inputs are defined by node

states, which underscores its potential for human teleoperation

of the bipedal robot via wearable sensor devices. Our immediate

priority is to implement the algorithm on the physical humanoid

robot system currently under construction. Subsequently, we

will expand its application to additional tasks, culminating in the

development of a teleoperation system for bipedal robots built

upon this control framework.

REFERENCES

[1] S. Dafarra, U. Pattacini, G. Romualdi, et al. “iCub3 avatar system:

Enabling remote fully immersive embodiment of humanoid robots,”

Science Robotics, vol. 9, no. 86, pp. eadh3834, 2024.
[2] X. B. Peng, Y. Guo, L. Halper, et al. “Ase: Large-scale reusable

adversarial skill embeddings for physically simulated characters,” ACM

Transactions On Graphics (TOG), vol. 41, no. 4, pp. 1-17, 2022.
[3] P. Arm, G. Waibel, J. Preisig, et al. “Scientific exploration of challenging

planetary analog environments with a team of legged robots,” Science

robotics, vol. 8, no. 80, pp. eade9548, 2023.
[4] Z. Zhuang, Z. Fu, J. Wang, et al. “Robot parkour learning”. arXiv

preprint arXiv: 2309.05665, 2023.

[5] J. Hwangbo, J. Lee, A. Dosovitskiy, et al. “Learning agile and dynamic

motor skills for legged robots,” Science Robotics, vol. 4, no. 26, pp.

eaau5872, 2019.
[6] J. Lee, J. Hwangbo, L. Wellhausen, et al. “Learning quadrupedal

locomotion over challenging terrain,” Science robotics, vol. 5, no. 47, pp.

eabc5986, 2020.
[7] X. B. Peng, M. Andrychowicz, W. Zaremba, et al. “Sim-to-real transfer

of robotic control with dynamics randomization,” in 2018 IEEE

international conference on robotics and automation (ICRA), pp. 3803-
3810,2018.

[8] J. Tobin, R. Fong, A. Ray, et al. “Domain randomization for transferring

deep neural networks from simulation to the real world,” in 2017
IEEE/RSJ international conference on intelligent robots and systems

(IROS), 2017, pp. 23-30.

[9] D. Chen, B. Zhou, V. Koltun, et al. “Learning by cheating,” in
Conference on Robot Learning. PMLR, 2020, pp. 66-75.

[10] T. Miki, J. Lee, J. Hwangbo, et al. “Learning robust perceptive

locomotion for quadrupedal robots in the wild,” Science Robotics, vol. 7,

no. 62, pp. eabk2822, 2022.

[11] A. Kumar, Z. Fu, D. Pathak, et al. “Rma: Rapid motor adaptation for

legged robots,” arXiv preprint arXiv: 2107.04034, 2021.
[12] Z. Li, X. B. Peng, P. Abbeel, et al. “Robust and versatile bipedal jumping

control through multi-task reinforcement learning,” arXiv preprint arXiv:

2302.09450, 2023.
[13] X. B. Peng, P. Abbeel, S. Levine, et al. “Deepmimic: Example-guided

deep reinforcement learning of physics-based character skills,” ACM

Transactions On Graphics (TOG), vol. 37, no. 4, pp. 1-14, 2018.
[14] X. B. Peng, Z. Ma, P. Abbeel, et al. “Amp: Adversarial motion priors for

stylized physics-based character control,” ACM Transactions on

Graphics (ToG), vol.40, no. 4, pp. 1-20, 2021.
[15] A. S. Vezhnevets, S. Osindero, T. Schaul, et al. “Feudal networks for

hierarchical reinforcement learning,” in International Conference on

Machine Learning. PMLR, pp. 3540-3549, 2017.

[16] S. Pateria, B. Subagdja, A. Tan, et al. “Hierarchical reinforcement
learning: A comprehensive survey,” ACM Computing Surveys (CSUR),

vol. 54, no. 5, pp. 1-35, 2021.

[17] Y. Yang, T. Zhang, E. Coumans, et al. “Fast and efficient locomotion via
learned gait transitions,” in Conference on Robot Learning. PMLR, pp.

773-783, 2022.

[18] X. B. Peng, Y. Guo, L. Halper, et al. “Ase: Large-scale reusable
adversarial skill embeddings for physically simulated characters,” ACM

Transactions On Graphics (TOG), vol. 41, no. 4, pp. 1-17, 2022.

[19] A. Brohan, N. Brown, J. Carbajal, et al. “Rt-1: Robotics transformer for
real-world control at scale,” arXiv preprint arXiv: 2212.06817, 2022.

[20] A. Brohan, N. Brown, J. Carbajal, et al. “Rt-2: Vision-language-action

models transfer web knowledge to robotic control,” arXiv preprint arXiv:
2307.15818, 2023.

[21] W. Huang, C. Wang, R. Zhang, et al. “Voxposer: Composable 3d value

maps for robotic manipulation with language models,” arXiv preprint
arXiv: 2307.05973, 2023.

[22] X. Wang, Y. Chen, W. Zhu. “A survey on curriculum learning,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no.
9, pp. 4555-4576, 2021.

[23] W. Chi, X. Jiang, Y. Zheng. “A linearization of centroidal dynamics for

the model-predictive control of quadruped robots,” in 2022 International
Conference on Robotics and Automation (ICRA), pp. 4656-4663, 2022.

[24] F. Jenelten, J. He, F. Farshidian, et al. “DTC: Deep Tracking Control,”

Science Robotics, vol. 9, no.86, pp. eadh5401, 2024.
[25] P. Arm, M. Mittal, H. Kolvenbach, et al. “Pedipulate: Enabling

Manipulation Skills using a Quadruped Robot's Leg,” arXiv preprint

arXiv: 2402.10837, 2024.
[26] H. Duan, J. Dao, K. Green, et al. “Learning task space actions for bipedal

locomotion,” in 2021 IEEE International Conference on Robotics and

Automation (ICRA), pp. 1276-1282, 2021.
[27] L. Ye, J. Li, Y. Cheng, et al. “From Knowing to Doing: Learning Diverse

Motor Skills through Instruction Learning,” arXiv preprint arXiv:

2309.09167, 2023.
[28] X. Cheng, K. Shi, A. Agarwal, et al. “Extreme parkour with legged

robots,” arXiv preprint arXiv: 2309.14341, 2023.

[29] H. Ito, K. Yamamoto, H. Mori, et al. “Efficient multitask learning with an
embodied predictive model for door opening and entry with whole-body

control,” Science Robotics, vol. 7, no. 65, pp. eaax8177, 2022.

[30] H. Ichiwara, H. Ito, K. Yamamoto, et al. “Spatial attention point network
for deep-learning-based robust autonomous robot motion generation,”

arXiv preprint arXiv: 2103.01598, 2021.

[31] X. Cheng, A. Kumar, D. Pathak. “Legs as Manipulator: Pushing
Quadrupedal Agility Beyond Locomotion,” arXiv preprint arXiv:

2303.11330, 2023.

[32] O. Melon, M. Geisert, D. Surovik, et al. “Reliable trajectories for
dynamic quadrupeds using analytical costs and learned initializations,” in

2020 IEEE International Conference on Robotics and Automation

(ICRA), pp. 1410-1416, 2020.
[33] O. Melon, R. Orsolino, D. Surovik, et al. “Receding-horizon perceptive

trajectory optimization for dynamic legged locomotion with learned
initialization,” in 2021 IEEE International Conference on Robotics and

Automation (ICRA), pp. 9805-9811, 2021.

[34] S. Gangapurwala, M. Geisert, R. Orsolino, et al. “Rloc: Terrain-aware
legged locomotion using reinforcement learning and optimal control,”

IEEE Transactions on Robotics, vol. 38, no. 5, pp. 2908-2927, 2022.

[35] http://ruina.tam.cornell.edu/research/topics/locomotion_and_robotics/Tik
-Tok/

[36] J. Schulman, F. Wolski, P. Dhariwal, et al. “Proximal policy optimization

algorithms,” arXiv preprint arXiv: 1707.06347, 2017.

